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(57) ABSTRACT

A method of classifying ciliary motion includes receiving
digital video data representing the ciliary motion generated
by an image capture device, wherein the digital video data
includes a plurality of frames. The method further includes
receiving an indication of a region of interest applicable to
each of the frames, wherein the region of interest includes a
plurality of pixels in each of the frames, calculating time
series elemental motion data for at least one elemental
motion parameter for the region of interest based on the
digital video data, and using the time series elemental
motion data to classify the ciliary motion.
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1
SYSTEM AND METHOD FOR AUTOMATED
IDENTIFICATION OF ABNORMAL CILIARY
MOTION

CROSS-REFERENCE TO RELATED
APPLICATIONS

This application claims priority under 35 U.S.C. § 119(e)
from U.S. provisional patent application No. 61/984,943,
entitled “System and Method for Automated Diagnosis of
Abnormal Ciliary Motion” and filed on Apr. 28, 2014, the
contents of which are incorporated herein by reference.

GOVERNMENT CONTRACT

This invention was made with government support under
grant #HL.908180 awarded by the National Institutes of
Health (NIH). The government has certain rights in the
invention.

BACKGROUND OF THE INVENTION

1. Field of the Invention

The present invention pertains to the diagnosis of defects
in ciliary motion that can lead to sinopulmonary disease, and
in particular, to systems and methods for automatically
classifying ciliary motion as normal or abnormal using video
images of the ciliary motion and decomposing the ciliary
motion into constituent motion elements, such as, without
limitation, rotation and deformation.

2. Description of the Related Art

Cilia are microtubule-based hair-like projections of the
cell that can be motile or immotile, and in humans are found
on nearly every cell of the body. Diseases known as ciliopa-
thies with disruption of nonmotile or motile cilia function
can result in a wide spectrum of diseases. In primary ciliary
dyskinesia (PCD), cilia in the airway that normally beat in
synchrony to mediate mucus clearance can exhibit dyski-
netic motion or become immotile, resulting in severe sin-
opulmonary disease. As motile cilia are also required for
left-right patterning, PCD patients can exhibit mirror sym-
metric organ placement, such as in Kartagener’s syndrome,
or randomized left-right organ placement, such as in het-
erotaxy. Patients with congenital heart disease (CHD) and
heterotaxy exhibit a high prevalence of ciliate motion (CM)
defects similar to those seen with PCD. CM defects have
also been associated with increased respiratory complica-
tions and poor postsurgical outcomes. Similar findings were
observed in patients with a variety of other CHD, including
transposition of the great arteries (TGA). Diagnosing
patients with CM abnormalities early may provide the
clinician with opportunities to institute prophylactic respi-
ratory therapies to prevent the need for surgical treatments.

Current methods for assessing CM rely on a combination
of tools comprising a “diagnostic ensemble.” One of these
tools entails the use of video microscopy for CM analysis of
nasal brush biopsies. Ciliary beat frequency (CBF) can be
computed from these videos, but it has low sensitivity for
abnormal CM. Furthermore, CBF does not capture the broad
distribution of frequencies present in ciliary biopsies. Cli-
nicians often employ visual assessment of ciliary beat pat-
tern to augment CBF measurements. However, this relies on
reviewer experience and is therefore highly subjective and
error-prone. Electron microscopy (EM), considered one of
the most reliable methods of the ensemble, cannot identify
PCD patients who present without ultra-structural defects.
Finally, it is difficult to compare results of the diagnostic
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ensemble in cross-institutional studies. Quantifying CM
requires an objective, sensitive, and verifiable method. Com-
putational methods, for example, can be trained to detect
different types of motion and small changes in beat frequen-
cies for identifying CM defects, and either present them in
a quantitative format, or classify the motion phenotypes with
greater precision and objectivity to make them suitable for
clinical diagnosis.

Thus, there is a need for a system and method for
automatically classifying ciliary motion as normal or abnor-
mal in order to effectively and efficiently diagnose CM
defects and thereby identify patients at risk for sinopulmo-
nary disease.

SUMMARY OF THE INVENTION

In one embodiment, a method of classifying ciliary
motion is provided that includes receiving digital video data
representing the ciliary motion generated by an image
capture device, wherein the digital video data includes a
plurality of frames. The method further includes receiving
an indication of a region of interest applicable to each of the
frames, wherein the region of interest includes a plurality of
pixels in each of the frames, calculating time series elemen-
tal motion data for at least one elemental motion parameter
for the region of interest based on the digital video data, and
using the time series elemental motion data to classify the
ciliary motion.

In another embodiment, an apparatus for classifying cili-
ary motion is provided. The apparatus includes an image
capture device for generating digital video data representing
the ciliary motion, wherein the digital video data includes a
plurality of frames, and a processor apparatus that stores and
is structured to execute a number of routines for implement-
ing the method described above.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a block diagram of an exemplary diagnostic
system in which the disclosed concept may be implemented;

FIG. 2 is a block diagram of a computing device forming
part of the diagnostic system of FIG. 1 according to an
exemplary embodiment;

FIGS. 3A and 3B are graphs showing rotation and defor-
mation data for exemplary ciliary motion;

FIGS. 4A, 4B, 4C and 4D are histograms generated
according to an aspect of the disclosed concept;

FIG. 5A shows PCA basis vectors from rotation ROIs
according to an aspect of the disclosed concept

FIG. 5B is a histogram showing the variance in the
appearance of the rotation FIG. 5A;

FIG. 5C reconstruction of an original signal with a small
number of PCA basis vectors according to an aspect of the
disclosed concept; and

FIG. 6 is a schematic flow diagram illustrating the meth-
odology of classifying ciliary motion according to an exem-
plary embodiment of the disclosed concept.

DESCRIPTION OF EXEMPLARY
EMBODIMENTS

As used herein, the singular form of “a”, “an”, and “the”
include plural references unless the context clearly dictates
otherwise. As used herein, the statement that two or more
parts or components are “coupled” shall mean that the parts
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are joined or operate together either directly or indirectly,
i.e., through one or more intermediate parts or components,
so long as a link occurs.

As used herein, “directly coupled” means that two ele-
ments are directly in contact with each other.

As used herein, “fixedly coupled” or “fixed” means that
two components are coupled so as to move as one while
maintaining a constant orientation relative to each other.

As used herein, the word “unitary” means a component is
created as a single piece or unit. That is, a component that
includes pieces that are created separately and then coupled
together as a unit is not a “unitary” component or body.

As employed herein, the statement that two or more parts
or components “engage” one another shall mean that the
parts exert a force against one another either directly or
through one or more intermediate parts or components.

As employed herein, the term “number” shall mean one or
an integer greater than one (i.e., a plurality).

As used herein, the terms “component” and “system” are
intended to refer to a computer related entity, either hard-
ware, a combination of hardware and software, software, or
software in execution. For example, a component can be, but
is not limited to being, a process running on a processor, a
processor, an object, an executable, a thread of execution, a
program, and/or a computer. By way of illustration, both an
application running on a server and the server can be a
component. One or more components can reside within as
process and/or thread of execution, and a component can be
localized on one computer and/or distributed between two or
more computers. While certain ways of displaying informa-
tion to users are shown and described with respect to certain
figures or graphs as screenshots, those skilled in the relevant
art will recognize that various other alternatives can be
employed. The terms “screen,” “web page,” and “page” are
generally used interchangeably herein. The pages or screens
are stored and/or transmitted as display descriptions, as
graphical user interfaces, or by other methods of depicting
information on a screen (whether personal computer, PDA,
mobile telephone, or other suitable device, for example)
where the layout and information or content to be displayed
on the page is stored in memory, database, or another storage
facility.

Directional phrases used herein, such as, for example and
without limitation, top, bottom, left, right, upper, lower,
front, back, and derivatives thereof, relate to the orientation
of the elements shown in the drawings and are not limiting
upon the claims unless expressly recited therein.

The present invention will now be described, for purposes
of explanation, in connection with numerous specific details
in order to provide a thorough understanding of the subject
invention. It will be evident, however, that the present
invention can be practiced without these specific details
without departing, from the spirit and scope of this innova-
tion.

The disclosed concept provides a computational pipeline
that uses a high-speed digital video of live cells from biopsy
samples and decomposes the CM into idealized elemental
components that form a “digital signature,” or quantitative
description of CM. In connection with the disclosed concept,
CM is considered an instance of dynamic texture (DT). DTs
are characterized by rhythmic motions of particles subjected
to stochastic noise. Examples of DTs include familiar
motion patterns such as flickering flames, rippling water, or
grass in the wind. Likewise, cilia beat in rhythmic waves,
with some stochastic behavior that collectively determines
their CM. DT analysis has been shown to be an effective
analysis method in other biomedical contexts, such as local-
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izing cardiac tissue in 3D time-lapse heart renderings and to
quantify thrombus formations in time-lapse microscopy. As
described in greater detail herein, the disclosed concept
implements two distinct classification strategies that yielded
robust results on two independent patient datasets of differ-
ing quality, recapitulating expert beat pattern analysis and
demonstrating the efficacy of elemental components for
classifying CM. The computational pipeline of the disclosed
concept can be used as a “black box” tool without special-
ized knowledge in machine learning or computer vision,
rendering CM predictions in an objective and quantitative
fashion and eliminating reviewer subjectivity.

The various particular embodiments of the disclosed
concept are described in detail herein. An exemplary diag-
nostic system 2 in which the disclosed concept may be
implemented (e.g., at least in part as one or more software
routines) is described below with reference to FIGS. 1 and
2.

As seen in FIG. 1, diagnostic system 2 includes an image
capture device 4 that is structured to be able to capture high
speed (e.g., 200 fps) digital video images (e.g., in AVI
format) of nasal ciliary biopsies, such as nasal brush biop-
sies. For example, and without limitation, image capture
device 4 may be a digital video camera. Diagnostic system
2 further includes a computing device 6. Computing device
6 is structured to receive digital video image data from
image capture device 4 by, for example, a wired or wireless
connection. Computing device 6 may be, for example and
without limitation, a PC, a laptop computer, a tablet com-
puter, a smartphone, or any other suitable device structured
to perform the functionality described herein. Computing
device 6 is structured and configured to receive the image
data from image capture device 4 and process the data using
an embodiment of a method described in detail herein to
classify ciliary motion as normal or abnormal in order to
effectively and efficiently diagnose CM defects.

FIG. 2 is a block diagram of computing device 6 accord-
ing to one exemplary embodiment. As seen in FIG. 2, the
exemplary computing device 6 is a PC and includes an input
apparatus 8 (which in the illustrated embodiment is a
keyboard), a display 10 (which in the illustrated embodi-
ment is an LCD), and a processor apparatus 12. A user is able
to provide input into processor apparatus 12 using input
apparatus 8, and processor apparatus 12 provides output
signals to display 10 to enable display 10 to display infor-
mation to the user as described in detail herein. Processor
apparatus 12 comprises a processor 14 and a memory 16.
Processor 14 may be, for example and without limitation, a
microprocessor (LP), a microcontroller, or some other suit-
able processing device, that interfaces with memory 16.
Memory 16 can be any one or more of a variety of types of
internal and/or external, storage media such as, without
limitation. RAM, ROM, EPROM(s), EEPROM(s), FLASH,
and the like that provide a storage register, i.e., a machine
readable medium, for data storage such as in the fashion of
an internal storage area of a computer, and can be volatile
memory or nonvolatile memory. Memory 16 has stored
therein a number of routines that are executable by processor
14. One or more of the routines implement (by way of
computer/processor executable instructions) at least one
embodiment of the method discussed briefly above and in
greater detail below that is configured to aid in properly
identifying CM defects by automatically classifying ciliary
motion as represented by captured digital video image data.

Having Just described one exemplary diagnostic system
in which the various embodiments of the disclosed concept
may be implemented, the discussion will now turn to a
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detailed description of the methodologies of the disclosed
concept. As noted above, the disclosed concept implements
two distinct classification strategies for automatically clas-
sifying ciliary motion.

As noted elsewhere herein, current CM analysis tech-
niques are highly subjective and lack quantitative standard-
ization. The gold standard for PCD diagnosis relies on a
combination of electron microscopy of cilia ultrastructure,
nasal nitric oxide measurements, and videomicroscopy of
nasal brush biopsies to determine CBF and manual ciliary
beat pattern assessment. Each of these diagnostic steps has
limitations. PCD may present without any visible ultra-
structural defects, and CBF analysis examines only the
dominant frequency from a kymograph of pixel intensity
variations over time without consideration of other frequen-
cies that may indicate abnormal motion. Furthermore, beat
pattern annotation is highly subjective, error-prone, and
operator dependent.

The disclosed concept addresses these issues in a com-
putational framework for automated, Objective assessment
of cilia motility that can be used reliably for clinical diag-
nosis of abnormal CM. The disclosed concept derives quan-
titative bases for comparison by decomposing the CM into
constituent motions. For this analysis, high-speed digital
videos obtained from patient nasal brush biopsies are exam-
ined and one or more regions of interest (ROIs) are selected
for analysis.

As noted above, in the framework of the disclosed con-
cept, CM is considered an instance of DT. DT analysis is
well described in the fields of computer vision and machine
learning and relies on tracking optical flow to quantify the
direction and magnitude of motion at each pixel between
two successive flames. Cilia beat in rhythmic waves with
some stochastic behavior that collectively determine their
CM. With DT analysis, CM is estimated using spatial and
temporal changes in image intensities, quantified by the
optical flow without the explicit delineation or tracking of
the cilium.

The features used in DT analysis are functions of the
first-order spatial derivatives of optical flow. From these
derivatives, the disclosed concept computes the constituent,
or elemental, motions used to characterize CM. These
elemental motions are computed at each pixel and, in the
exemplary embodiment, take the form of instantaneous
rotation (or bending angle) and deformation (biaxial shear).
These quantities are orientation-invariant; consequently, the
CM analysis can be conducted regardless of the orientation
of the cilia. Additionally, like pixel intensities, they also
exhibit periodic temporal behavior that can be analyzed in
much the same way.

A potential pitfall of automated CM analysis is the
heterogeneity inherent in the CM. A single nasal brush
biopsy often contains a spectrum of beat frequencies and
motile behaviors, even within the same ROI. The heteroge-
neity can arise from multiple sources, such as overlapping
cells with distinct motions, background particulate obstruct-
ing proper view of the cilia, and video capture artifacts such
as changes in lighting or plane of focus.

The disclosed concept provides two computational meth-
ods to quantify the CM and address its heterogeneity. In the
first method, the disclosed concept uses aggregated temporal
and frequency domain properties of the elemental motion
signatures shown in FIGS. 3A and 3B (wherein the pixel
represented by the solid line is indicative of healthy CM and
the pixels represented by the dotted lines are representative
of'abnormal CM) in the form of histograms to build a robust
representation of the CM and its variations, creating dis-
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criminative models of the CM. In the second method, the
disclosed concept models the elemental motion signatures of
CM and its variations directly using autoregressive (AR)
processes, creating generative models of the CM.

Referring specifically to the first method, it represents the
elemental motions of CM in each ROI as a combination of
histograms, or profiles. This is a discriminative method, as
the histograms are compact and discriminate abnormal from
normal CM. In the exemplary embodiment, the disclosed
concept computes the following four histograms, two in the
temporal domain and two in the frequency domain: (i) a
rotation frequency histogram/profile (RFP, FIG. (4A), (ii) a
deformation frequency histogram/profile (DFP, FIG. 4B),
(iii) a rotation magnitude histogram/profile (RMP, FIG. 4C),
and (iv) a deformation magnitude profile (DMP, FIG. 4D).
The magnitude histograms/profiles consist of the rotation
and damnation time-series values in the ROI. The frequency
histograms/profiles are built by transforming the rotation
and deformation signals from the time domain into the
frequency domain. Frequency profile calculation is analo-
gous to computing CBF from pixel intensity variations, but
rather than reporting a single dominant frequency for the
entire ROI, a histogram is built from the dominant frequen-
cies at each pixel. The combination of time-dependent and
frequency-dependent properties allows the disclosed con-
cept to differentiate CM that beat at similar rates but
demonstrate different beat patterns, and vice versa. FIGS.
4A-4D show profiles for normal CM from one ROI (non-
hatched) compared to abnormal CM in a second ROI
(hatched) their qualitative differences suggest a quantitative
basis for discriminating normal from abnormal CM.

Referring now specifically to the second method, it mod-
els the elemental motions of CM directly using AR models.
This is a generative method the representation is not as
compact, but can be used to generate new instances of CM
that adhere to certain statistical properties. AR models are
useful for representing periodic signals, such as DTs. AR
models have an appearance component (the distribution of
values at any time t) and a dynamic component (how the
values change from t to t+1). The appearance component is
derived by principal component analysis (PCA) of elemental
motions in arbitrary patches of fixed size extracted from
ROIs. FIG. 5A shows PCA basis vectors for patches from
rotation ROIs; as shown in FIG. 5B, a large amount of
variance in the appearance of this rotation is captured by
small number of PCA dimensions. The evolution of elemen-
tal motions in a patch can be viewed as a time-series in the
PCA space by projection (FIG. 5C, top panel) and can be
captured by a small number of PCA dimensions (FIG. 5C,
middle and bottom panels). This evolution is quantified by
a set of motion parameters that define how the cilia move
within the PCA space, providing a generative basis for CM
identification.

FIG. 6 schematically shows (as an overview) the imple-
mentation of the methodology of the disclosed concept is
applied to 2 different patients (patient I and patient J)
according to one particular exemplary embodiment. This
implementation is described below.

First, high-speed digital videos of ciliary biopsies from
the 2 patients is uploaded in an appropriate format, such as,
without limitation, AVI format at 200 fps, to an electronic
repository such as a website built using the open source
jQuery-File-Upload application (https://github.com/
blueimp/jQuery-File-Upload) on an Apache 2.2 webserver
running PHP 5. After upload, the users are presented with an
interface, such as in HTMLS canvas interface, through
which they are able to specify regions of interest (ROIs) by
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drawing boxes over a still frame of the video. This process
is referred to as video annotation, and each annotation is
stored in a suitable database such as a MySQL database.

Next, the ROIs are processed through a priming method
designed to discard noisy or background pixels; for
example, pixels depicting cells or space beyond the cilia.
This pruning method identified a threshold and discarded
pixels whose intensity changes fell below it. In the exem-
plary embodiment, the threshold value is adaptive and
specific to each RO, as the intensities between ROIs may
vary greatly. In particular, in the exemplary embodiment, for
a single ROI, the standard deviation o, of the time-varying
intensity changes at each pixel i is computed and used to
construct a histogram of these standard deviations. The
Kolmogorov-Smirnov distance metric is used to determine
whether the histogram more closely resembled a gamma
distribution or a Gaussian distribution. In the former case,
the distribution’s peak, or O, is used as the pruning
threshold value, and all pixels for which o,<0,,,, are dis-
carded. If the distribution is better approximated by a
Gaussian, the distribution’s mean, or o, is used as the
pruning value, and all pixels for which o,<o,,,,, our dis-
carded. Furthermore, a connected component analysis is
performed on the remaining pixels and all but those in the
largest component are discarded. The analysis described
below is then performed only on these remaining pixels.

First, X and Y (horizontal and vertical) optical flow
components are computed for each ROI. The derivatives of
these vectors are then computed and used to calculate the
rotation (in radians/frame, FIG. 3A) and deformation (in
pixels/frame, FIG. 3B) at each pixel. Deformation, like
optical flow, is a vector quantity, and therefore any analysis
performed uses its vector magnitude.

Next, as noted elsewhere herein, two classification meth-
ods that operate in distinct feature spaces are then employed
to analyze and further process the optical flow components.

As described briefly elsewhere herein, the first method
uses a combination of histograms, or profiles, composed of
rotation and deformation time-series data (magnitude pro-
files), and the frequencies with which those time-series
changed (frequency profiles). In the exemplary embodiment,
magnitude profiles are computed by first filtering the rota-
tion and deformation time-series data with a one-dimen-
sional Gaussian with width o. The filtered data is then placed
in histograms, forming the RMP (FIG. 4C) and DMP (FIG.
4D) for an ROI. Frequency profiles are then computed by
transforming the time-series data into the frequency domain
using a Fast Fourier Transform. Specifically, in the exem-
plary embodiment, a spectrogram, or a sliding average of
frequency spectra, is computed which results in a robust
Fourier representation of the original signal. The subsequent
signal amplitude defined the power spectrum for the rotation
or deformation at a pixel. From this power spectrum, the
dominant frequency is identified. A heatmap of these fre-
quencies is created by arranging them spatially according to
pixel position. Spurious frequencies are suppressed using a
median filter. The resulting frequencies, one at each pixel,
are then collected into histograms with x bins, forming the
RFP (FIG. 4A) and DFP (FIG. 4B) for an ROL

As also described briefly elsewhere herein, the second
method models the CM as an autoregressive (AR) process.
AR models consist of an appearance component defining
how the cilia look, and a dynamic component defining how
the cilia move in a principal component space of q dimen-
sions. In the exemplary embodiment Singular Value Decom-
position (SVD) is used to compute the principal component
analysis (PCA) space and derive the basis vectors. PCA is
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sensitive to the spatial orientation of the system, precluding
the use of pixel intensities in AR analysis: if the cilia are not
identically oriented, the resulting PCA basis vectors for
intensities will resemble random noise. This underscores
one of the main advantages of using orientation-invariant
properties of the CM such as rotation and deformation. Next,
in the exemplary embodiment a pixel nearest the middle of
a ROI with a signal at the dominant frequency for the ROI
is located, and a 15x15 box is expanded around that pixel,
forming a patch. After extraction, each frame is flattened
into a single 225-length column vector, giving each patch
dimensions of 225x250 frames. This process is repeated for
all ROIs, appending each patch to the end of the previous
one. This will result in a data structure with dimensions
225%(in* 250), wherein in is the number of our allies in the
data set. SVD is then performed on this structure to yield the
basis vectors (FIG. 5A) and AR motion parameters. The
parameters comprised d transition matrices, each with
dimensions q *q, and defined the CM within the PCA space.

In the exemplary embodiment, for classification and test-
ing purposes, each ROI is treated as a single data instance
with its corresponding label (0 for healthy, 1 for abnormal).
a Support Vector Machine (SVM), a popular classification
method in machine learning, is then used to test the methods.
All classifiers operate on the premise of finding a rule, or
decision boundary, which most accurately separates data
instances into their correct categories. These boundaries
often take the form of lines, or planes, which separate
instances in Cartesian space. Functionally, each ROI can be
considered a point in high-dimensional space; thus, an SVM
will attempt to find a plane in that space which most
accurately separates the healthy instances from the dyski-
netic ones.

In the exemplary embodiment, the SVM is implemented
using the Python scikit-learn machine learning library,
which uses the popular libsvm implementation for SVMs.
Generally, a data instance consists of a single array, or
“feature vector,” that quantitatively describes the instance.
different feature vectors are used for the two methods of the
disclosed concept.

For the histogram/profile method, the RFP, RMP, DFP,
and DMP computed from an ROI are combined into a
custom SVM kernel. Four weights that sum to 1, one for
each histogram, are then chosen through multiple parameter
scans. Each histogram is compared pairwise to the matching
histogram of all other instances. In the exemplary embodi-
ment, the X? metric is used for comparison, as it is com-
monly used for comparing histograms. The four X* dis-
tances, weighted accordingly, are summed into a final
“similarity” score between two ROI instances. This process
is repeated for all pairwise combinations of ROIs, generat-
ing at NxN kernel matrix that is used to initialize the SVM.
Specifically, in the exemplary embodiment, an instance of
NuSVC in the scikit-learn library is used.

For the AR method, the transition matrices of the dynamic
component for each ROI are used as feature vectors in the
SVM. The dimensionality of the associated transition matri-
ces is controlled through the parameter q, while the number
of transition matrices is governed by the parameter d. The
transition matrices are flattened row-wise and concatenated,
resulting in a single feature vector for each ROI with length
q * q * d. As before, in the exemplary embodiment, an
instance of NuSVC is used to perform classification.

In order to return a patient-level diagnostic prediction, a
majority vote is performed using the ROI classifications for
each patient, with the result of that vote being returned as the
overall diagnostic prediction for the patient.
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Thus, as described herein, the disclosed concept provides
a robust and objective video image based system and
method for automatically classifying ciliary motion as nor-
mal or abnormal in order to effectively and efficiently
diagnose CM defects.
In the claims, any reference signs placed between paren-
theses shall not be construed as limiting the claim. The word
“comprising” or “including” does not exclude the presence
of elements or steps other than those listed in a claim. In a
device claim enumerating several means, several of these
means may be embodied by one and the same item of
hardware. The word “a” or “an” preceding an element does
not exclude the presence of a plurality of such elements. In
any device claim enumerating several means, several of
these means may be embodied by one and the same item of
hardware. The mere fact that certain elements are recited in
mutually different dependent claims does not indicate that
these elements cannot be used in combination.
Although the invention has been described in detail for
the purpose of illustration based on what is currently con-
sidered to be the most practical and preferred embodiments,
it is to be understood that such detail is solely for that
purpose and that the invention is not limited to the disclosed
embodiments, but, on the contrary, is intended to cover
modifications and equivalent arrangements that are within
the spirit and scope of the appended claims. For example, it
is to be understood that the present invention contemplates
that, to the extent possible, one or more features of any
embodiment can be combined with one or more features of
any other embodiment.
What is claimed is:
1. A method of classifying ciliary motion, comprising:
receiving digital video data representing the ciliary
motion generated by an image capture device, the
digital video data comprising a plurality of frames;

receiving an indication of a region of interest applicable
to each of the frames, the region of interest comprising
a plurality of pixels in each of the frames;

calculating time series elemental motion data for at least
one elemental motion parameter for the region of
interest based on the digital video data; and

using the time series elemental motion data to classify the

ciliary motion.

2. The method according to claim 1, wherein the calcu-
lating the time series elemental motion comprises creating
optical flow vector data for the region of interest using the
digital video data and calculating the time series elemental
motion data for the at least one elemental motion parameter
based on the optical flow vector data.

3. The method according to claim 2, wherein the using the
time series elemental motion data comprises creating at least
one temporal domain histogram and at least one frequency
domain histogram using the times series elemental motion
data, and using the at least one temporal domain histogram
and the at least one frequency domain histogram to classify
the ciliary motion.

4. The method according to claim 2, wherein the calcu-
lating the time series elemental motion data for at least one
elemental motion parameter based on the optical flow vector
data comprises calculating time series rotation data and time
series deformation data based on the optical flow vector
data.

5. The method according to claim 4, wherein the using
step comprises creating a rotation temporal domain histo-
gram and a rotation frequency domain histogram using the
time series rotation data and a deformation temporal domain
histogram and a deformation frequency domain histogram
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using the time series deformation data, and using the rotation
temporal domain histogram, the rotation frequency domain
histogram, the deformation temporal domain histogram, the
deformation frequency domain histogram to classify the
ciliary motion.

6. The method according to claim 1, wherein the using the
time series elemental motion data to classify the ciliary
motion comprises calculating a plurality of autoregressive
motion parameters using the time series elemental motion
data and using the autoregressive motion parameters to
classify the ciliary motion.

7. The method according to claim 6, wherein the calcu-
lating the plurality of autoregressive motion parameters
comprises performing singular value decomposition using
the time series elemental motion data to generate a plurality
of basis vectors, and generating the autoregressive motion
parameters using the basis vectors.

8. The method according to claim 1, wherein the using the
time series elemental motion data to classify the ciliary
motion comprises creating at least one temporal domain
histogram and at least one frequency domain histogram
using the time series elemental motion data, calculating a
plurality of autoregressive motion parameters using the time
series elemental motion data, and using the at least one
temporal domain histogram, the at least one frequency
domain histogram and the autoregressive motion parameters
to classify the ciliary motion.

9. The method according to claim 1, wherein the ciliary
motion is classified as normal or abnormal in the using step.

10. The Method according to claim 1, further comprising
generating and displaying an output based on a result of the
using step.

11. The method according to claim 1, further comprising
identifying a second region of interest applicable to each of
the frames, the second region of interest comprising a
second plurality of pixels in each of the frames, and calcu-
lating second times elemental motion data for at least one
elemental motion parameter for the second region of interest
based on the digital video data, wherein the using step
comprises using the elemental motion data and the second
elemental motion to classify the ciliary motion.

12. A non-transitory computer readable medium storing
one or more programs, including instructions, which when
executed by a computer, causes the computer to perform the
method of claim 1.

13. An apparatus for classifying ciliary motion, compris-
ing:

an image capture device for generating digital video data
representing the ciliary motion, the digital video data
comprising a plurality of frames;

a processor apparatus that stores and is structured to
execute a number of routines, the number of routines
being structured to:
receive the digital video data;
receive an indication of a region of interest applicable

to each of the frames, the region of interest com-
prising, a plurality of pixels in each of the frames;
calculate time series elemental motion data for at least
one elemental motion parameter for the region of
interest based on the digital video data; and
use the time series elemental motion data to classify the
ciliary motion.

14. The apparatus according to claim 13, wherein the
routines are structured to calculate the time series elemental
motion by creating optical flow vector data for the region of
interest using the digital video data and calculating the time
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series elemental motion data for the at least one elemental
motion parameter based on the optical flow vector data.

15. The apparatus according to claim 14, wherein the
routines are structured to use the time series elemental
motion data by creating at least one temporal domain
histogram and at least one frequency domain histogram
using the times series elemental motion data, and using the
at least one temporal domain histogram and the at least one
frequency domain histogram to classify the ciliary motion.

16. The apparatus according to claim 14, wherein the
routines are structured to calculate the time series elemental
motion data for at least one elemental motion parameter
based on the optical flow vector data comprises calculating
time series rotation data and time series deformation data
based on the optical flow vector data.

17. The apparatus according to claim 16, wherein the
routines are structured to use the time series elemental
motion data by creating a rotation temporal domain histo-
gram and a rotation frequency domain histogram using the
time series rotation data and a deformation temporal domain
histogram and a deformation frequency domain histogram
using the time series deformation data, and using the rotation
temporal domain histogram, the rotation frequency domain
histogram, the deformation temporal domain histogram, the
deformation frequency domain histogram to classify the
ciliary motion.
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18. The apparatus according to claim 13, wherein the
routines are structured to use the time series elemental
motion data to classify the ciliary motion by calculating a
plurality of autoregressive motion parameters using the time
series elemental motion data and using the autoregressive
motion parameters to classify the ciliary motion.

19. The apparatus according, to claim 18, wherein the
routines are structured to calculate the plurality of autore-
gressive motion parameters by performing singular value
decomposition using the time series elemental motion data
to generate a plurality of basis vectors, and generating the
autoregressive motion parameters using the basis vectors.

20. The apparatus according to claim 13, wherein the
routines are structured to use the time series elemental
motion data to classify the ciliary motion by creating at least
one temporal domain histogram and at least one frequency
domain histogram using the time series elemental motion
data, calculating a plurality of autoregressive motion param-
eters using the time series elemental motion data, and using
the at least one temporal domain histogram, the at least one
frequency domain histogram and the autoregressive motion
parameters to classify the ciliary motion.
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